Most garage door openers include a remote that lets you open and close the door from the comfort and safety of your car. Some garage door openers support Internet connectivity, either as an add-on or built in. This allows you to use an app that lets you open or close the garage door from your smartphone or tablet, and monitor your garage door's status (open or closed) from anywhere that you can connect to the net.

The torsion shaft with lift drums on the ends is above the door. The standard residential door shaft is a 1-inch outside diameter hollow steel tube. The inside diameters of the bearings, drums, and winding cones are sized to loosely fit that 1-inch diameter shaft. At the center is a bearing plate, on either side of which are the torsion springs, or in some cases just one larger spring. The spring pictured on the left in the photo is broken about 1/4 of the way in from its left end. The black shaft with dangling rope and door bracket is the track for the electric opener.

If you live in a home where there are living quarters directly above the garage, Garage Guide DIY says force-sensing technology built into the B730 ensures a smooth operation, no matter what temperature it is in your garage. The unit adjusts the motor's power on the fly, keeping it running smoothly. Amazon reviewer Steven Bone says the B730/WD962KEV opener runs extremely quietly and is easy to install.
Sectional: Also known as a raised panel door, this door is the most common. It is made of several horizontal panels hinged together, fitted with wheels and mounted within a track. The biggest advantage of this door is it takes up relatively little space and easily controlled with a standard remote garage door opener for a nominal cost. Their moving parts are readily accessible which can keep repair costs low. The average cost for sectional door repairs is $128.
You can expect to pay between $130 and $350 for a garage door opener, with most models costing an average of $200. The most expensive openers usually include extra accessories and smartphone controls, though most openers can work with a smartphone if you buy a Wi-Fi adapter such as MyQ. The types of garage door openers in increasing order of average cost are as follows: chain, belt, screw and direct drive.
Now 13 pounds of force must be respected when backed by many hundreds of foot-pounds of stored energy, waiting to be released. Holding this torque is equivalent to stalling a 3 horsepower DC motor. But holding and turning these handles does not require extraordinary human strength. Note that this maximum tangential force depends only on the weight of the door, and the radius of the drums, and is divided by the number of springs (some designs have only one longer spring, as mine did originally, instead of two shorter ones). Higher or lower lift distances imply more or less turns to wind the spring (and thus a different spring geometry), but not more force on each turn.
Security Lights: Most newer garage door openers have at least two bright light bulbs, as well as lights activated by motion. On the other hand, some older or cheaper openers are limited to a single light bulb. This doesn't help much with a garage darkened by shadows, leaving you unsure if the rustling in the corner is your cat … or a skunk that snuck into the garage.
Finding the best rated garage door openers is a bit of a challenge. Quality professional reviews are currently hard to come by, and we did not spot any that addressed current models. About the only credible, current, testing-based feedback we spotted was from Wirecutter, and it addressed smart garage door controllers rather than openers. That said, if you would like to add smart features to an existing garage door opener that you are otherwise perfectly happy with, the review is worth a read.

We are a family owned and operated, local garage door company in the Carlisle area that believes in attention to detail and an emphasis on customer service and satisfaction. We even offer same-day service because we know that when your garage door isn’t working the way it should, you need it fixed fast. We offer affordable rates that will fit your budget, and we’re confident you won’t find another garage door installation company in Carlisle or the surrounding areas with the same dedication to our customers and the quality of our work at the affordable rates we offer our clients.


How many times a day do you open or close your garage door? You probably don’t even know because we take our garage door for granted until…. Until it doesn’t go up… until it doesn’t come down… until it gets noisy, difficult to open by hand or some other problem develops. You need help – and if you’re locked in or locked out, you need help in a hurry. You need A-Authentic Garage Doors. Here’s why:
The replacement springs in my case proved to be 0.2253 wire size, 2.0 inch (inside) diameter, and 24 inches long, in a pair of one left- and one right-hand winding. Actually, the old springs in these pictures were a slightly smaller size, but another similar door on this garage was better balanced by that size. Whoever installed the old springs didn't quite get the weight and size just right; it is not unusual to find a repair service installing a slightly off-balance spring size that happened to already be on the truck during the service call. My electric opener had no trouble handling the small imbalance. But since it is safer to reduce the electric operating force as much as possible through careful balancing, I chose the size that was working better on the other door. The Chamberlain brand electric openers (also sold by Sears) I have incorporate a plastic worm gear that tends to wear out after some years of use, requiring a disassembly and installation of a $20 repair kit; this wear is minimized by a properly balanced door.
Another recent innovation in the garage door opener is a fingerprint-based wireless keypad. This unit attaches to the outside of the garage door on the jamb and allows users to open and close their doors with the press of a finger, rather than creating a personal identification number (PIN). This is especially helpful for families with children who may forget a code and are latchkey kids.
As we’ve mentioned before, springs are installed within your garage lift mechanism in order to help lift the door. Because doors are so heavy, the lift motor would undergo far more significant wear and tear if it had to lift the full weight of the door every time you opened it. Furthermore, in order to ensure that you can open your door even if you lose power in your home, springs allow you to lift the door by hand when the motor is disengaged.
A spring design manual, also called a rate book, gives tables that relate the torque constant ("rate") and maximum turns for springs of given wire size, diameter, and length. For example, a typical page in a rate book would show a table for a given wire size and inside diameter, the maximum inch-pounds (MIP) of torque available for a standard lifetime of 10,000 cycles in that size, the weight of the spring per linear inch, and the rates of the spring (as IPPT, inch-pounds per turn) for each of various lengths. From these figures one can calculate the lifting capacity, substitutions, conversions, and cycle life upgrades for a door of given weight and drum geometry. The weight-lifting capacity of a given spring is calculated based on its torque constant (IPPT, or inch-pounds per turn), which is the rotational version of the spring constant that characterizes the spring. The IPPT constant is found from tables giving IPPT for given spring dimensions (wire-size/diameter/length). The same tables may indicate the maximum number of turns for various expected lifetimes in cycles. The torque required to balance a given door can be calculated from the weight of the door times the moment arm of the drums (as we do below under "Calculating the Forces We Will Be Handling"). The ultimate torque of the spring in the fully-wound condition is the number of turns (when fully-wound) times the IPPT constant. Choosing a spring to balance the door then simply requires matching the ultimate torque of the spring to the balancing torque.
Lift cable placement: On the standard residential door mechanism, the loops at the lower ends of the two lift cables loop over the two bottom roller shafts which project from the bottom bracket on the door. The upper cable ends fasten to the drums using one of the methods described above. The drums are positioned along the torsion shaft such that the inner edge of each drum is approximately over the edge of the door. The cable winds onto the drum from outside in, so at the top of travel the cable is winding onto the inner edge of the drum, vertical from the edge of the door where it is looped over the roller shaft. As the door is lowered, the cable winds out to the outer edge of the drum, and thus is a bit out from the vertical, but the cable still falls in the gap between the guide rails and door edge. My cables rub and slap on the rails a bit, but after 30 years and many 10,000s of cycles, they don't seem to have worn at all.
Measure springs only when relaxed: Measurements must be taken on a relaxed spring because the winding adds significant overall length while reducing the coiled diameter. If you have a paired design, and one is broken and one is intact, then don't try to measure the length of the intact spring with the door down. A wound spring has 7 or 8 turns adding to the overall length, and will therefore be about 2 inches longer than when relaxed. Measure the lengths of the pieces of the broken spring, which will be unwound, and add them together. As a check, one can measure the length of the intact spring after it is unwound in the procedure to follow below. Be sure also to observe whether the springs are originally of equal sizes, because it is quite possible that they are not.
Get a price quote on a New Garage Door- Use our super-simple garage door designer to learn about the available options, pick the ones you like best, and send it to us for a free quote. It's the fastest way to shop for a garage door on the web. In less than 10 minutes, you'll have a much better idea what you want and get a price without sales pressure. Click garage door designer to get started...
When a garage door goes off the track, the spring breaks, the door is dented or the garage door opener is on the fritz, a professional garage door repair specialist can help. The cost to have a garage door fixed varies, but the national average cost of garage door repair is $70-$110. The extent of the damage and the size and material of the door will affect the final cost. A garage door repair company generally charges a national average of $80 for a service call, which includes the first hour of labor and service, such as testing and inspecting the garage door and opener. Apart from labor, the garage door repair costs hinge on buying replacements parts. For example, a new spring costs an average of $60. Expect to pay several hundred dollars, though, if the door is beyond repair; a new garage door ranges in price from $200 to $4,000, and most homeowners spend an average of $800-$1,200.
We lead busy and sometimes hectic lives. It's easy for someone low on sleep and high on stress to accidently bump into their garage door leaving a little damage. If you're lucky it's just an individual garage door panel that's been damaged. This will leave you with the option of garage door panel replacment. There's a chance it might cost you upwards of $150-200 to spot repair damaged garage door panel. If it happens to be an in-production model, they probably will be able to repair or replace the entire panel (if needed) for $250-400. Unfortunately if you've got an older model of garage door the panels may no longer be in production. This might seem like a disadvantage because you'll end up having to just replace the entire door. Many times it's actually easier and more cost effective to just replace the garage door.
Trading wire size for length, diameter, or cycle life: Now we are really going to save you some money, if you just recall your high school algebra class (and I don't mean that cute cheerleader who sat next to you). If you further understand the role of the 4th power of the spring wire size (letter d in the formulas above) in the numerator of the spring rate formula, and how to increase or decrease d to compensate for changes in length, diameter, and cycle life, then you're qualified for elite spring calculations. Matching springs is a matter of equating the 4th power of the proportion in wire size change to the proportion of change in the diameter or length or the product of both diameter and length. However, it is usually best to only increase wire size when substituting a spring, since this does not derate the cycle life. If you observe that the formula for bending stress is proportionate to the inverse 3rd power of the diameter, then physically a proportionate increase in wire size will result in a dramatic increase in cycle life of the 3rd power of that proportion. Trade-off example: Yawn with me while we ponder my original spring once more. Let's say I was in a fit of engineering mania, and wanted to replace my spring having a 0.2253 inch diameter wire (d = 0.2253) with a 0.262 wire version (d = 0.262). How much longer is the spring with equal torque rate, assuming we use the same coil diameter? The proportion of this change is 0.262/0.2253 = 1.163, and the 4th power of that is 1.83. This means the length must increase by a factor of 1.83 (again, not counting dead coils). Recalling that the length in Example 1 was 102 non-dead coils, the heavier wire spring must be about 1.83*102 = 187 coils, which when adding 5 dead coils and multiplying by the wire size to get the overall length, is (187+5)*0.262 = 50 inches, versus 24 inches in the original. So using this heavier wire more than doubles the length (and thus the mass and thus the cost). While the cost about doubles, the stress goes down by the inverse 3rd power of the wire size proportion, or 1/(1.163**3) = 0.64. Sress is favorably, non-linearly related to cycle lifetime (halving the stress more than doubles the lifetime), so this decreased stress should more than double the expected lifetime of the spring. While the up-front cost is more, the true cost of an amortized lifetime is much less. In short, per cycle it is cheaper. Ah, the wonders of engineering calculations! Conclusion: Observe that the stress formula (and thus the cycle lifetime) depends only on wire diameter (d) for equal torques. Thus the only way to improve cycle lifetime is to use heavier wire. For equal torques, heavier wire size, due to the exponents in the formulas, increases cycle lifetime much faster than it increases mass (and thus cost), physically speaking.

Clopay, a garage door manufacturer, provides online installation manuals for their products. These include excellent mechanical diagrams and brief instructions for winding torsion springs on their doors. Of course, this is specific to their product designs, which may or may not match what you have. Note that some of their products involve the "EZ-Set assembly option" mechanisms that use a geared housing for winding (instead of standard winding cones) and non-standard geometry for the drums. Clopay should get an award for at least acknowledging in their instructions that you might be able to install your own new door (although they insist you must not take out an old one if it has torsion springs).
Although the door weight and drum size determine the maximum torque (termed MIP, maximum inch-pounds) needed from the fully-wound spring(s), the spring selection for a given door can still be varied to adjust the cycling stresses. A heavier wire on a larger diameter or longer length will produce the same torque as a lighter wire on a smaller diameter or shorter length, while undergoing less stress and therefore increasing expected cycle lifetime. The heavier spring will cost more but last longer, so this is another design trade-off. Calculating these spring sizes in the field is done using a book of tables (or the software equivalent) that we cannot provide here, although you will find the formulas to estimate spring properties below. If you can accurately provide the weight of the door, or the size(s) of the old spring(s) (assuming they were well-matched to balance the door), then a spring dealer should be able to tell you which spring sizes will work for you.
Here is what a winding cone looks like without the spring. The threads that grip the inside of the spring coils are ambidextrous, so you can use the same part on either right- or left-hand-wound springs. The cone size is specific for a certain inner diameter of springs, so if you have the wrong size, the cone will slip inside the spring (cone too small), or not fit (cone too big).
Most wood doors are sectional roll-up doors, though a swing-up wood door that’s meant to be painted can be affordably built in the driveway from a wood framework and plywood. Custom wood doors are typically made of durable softwoods such as Douglas fir, cedar, redwood or cypress, or from hardwoods such as oak or mahogany. Appearance-grade hardwoods are relatively expensive.

I repeat my caution about the uncertainty of interpreting color codes. A professional installer reading this page emailed me to say that the red color indicates the springs are right-hand windings, not the DASMA color code for the wire size. But this photo shows both a right- and a left-hand spring, and both have the red paint on the cones and set-screws. I conclude it is prudent to make your own measurements and analysis. Do not rely on the colors on old installations. The only time I would respect them would be on new parts that carried documentation giving the code.


Next, the torsion shaft is reassembled with the new springs, the drums repositioned loosely on the shaft, this whole assembly slid back into the end bearings, and the drum set-screws tightened down. I tightened the set-screws about 1/2 or 3/4 of a turn after contact with the shaft, which provides a good grip, but does not distort the shaft. The drums can be set on their old positions, if they were correctly installed, which is snug up against the end bearings to remove any longitudinal play in the torsion shaft. Now the lift cable can be reattached to the drums, and a slight temporary torque applied to the shaft to keep the cable taut while the first spring is wound. This temporary torque is conveniently applied with a pair of locking pliers clamped on the shaft, positioned such that they hold the torque by pressing lightly against the wall above the door, before you start the spring winding, The locking pliers stay on the torsion shaft until you have finished the spring winding locked down the spring cone(s) with the setscrew(s), and removed the winding bars. Then you simply remove them with the release on the wrench handle. I feel that any job that doesn't require a trick manipulation with either locking pliers or duct tape (or in the ultimate case, both!) is just too boring. My trusty pliers look a trifle rusty ever since I used them to clamp something on my outdoor TV antenna "temporarily" and left them out in the weather for, oh, several years. The white stuff on the drum is paint overspray from the original painting of the garage interior.

If you have an oversized door, one made of a heavier material such as wood, or a one-piece door, you should consider getting something stronger. In these cases, look for a garage door opener motor rated between 3/4 horsepower and 2 horsepower. There’s nothing stopping you from using a 2-horsepower opener on a smaller door, which can make for smoother operation and a longer service life, but high-horsepower units cost more.
Repair of garage doors is a licensed trade in many jurisdictions, and manipulation of the market inevitably follows. Look in your phone book yellow-pages under "garage doors" and you'll find a lot of big, costly ads for door service. The profits are quite juicy, I'm sure. The customers need service urgently, and this need will typically arrive suddenly and at a busy time when shopping for prices is not convenient. A few dollars in parts, an hour of labor and travel, and a $150 invoice (assuming the outfit is charging fairly, some are not). Lately (2006) I hear of outfits charging $200 or $300 for this work, and occasionally a story of a $500 or $800 service call. You'll also find the phonebook advertisers waiting eagerly for your call, because artificially high prices inevitably lead to an oversupply of service firms working under capacity.
The best garage door openers have a lifetime warranty on their motor and belt or chain. While it’s common for motors to come with lifetime warranties, belt and chain and parts warranties are often not that generous. However, it’s not uncommon for parts warranties to extend several years. Often the warranties are limited and subject to specific stipulations that vary and are detailed in the user manuals.
As a first time homeowner, Home advisors is an invaluable tool! There is a steep learning curve that comes with buying a house!!!! Being able to have access to unbiased information is great! It really helps to have a basic idea of what costs are, and all the different things that go into each project. who knew that there was so much to consider when looking to replace garage doors!!!!
Leveling the door: Before commencing the spring winding, to check that you have the door properly leveled on the cables, considering all the factors above that make this a tricky adjustment, apply the winding cone setscrew lightly to lock the (unwound) spring cone temporarily on the torsion shaft, and momentarily lift the door slightly off the floor. Adjust the drum set as needed to level the door, repeating this slight lift test. Loosen the cone setscrew before winding the spring(s).
Looking to repair your garage door opener? Common problems could range from issues with the remote or wall switch that control the garage door opener to more serious issues like a grinding noise coming from the opener itself. If you need help with repairing your garage opener, schedule a repair appointment today! We repair all major brands and have same-day availability in most markets, so we can get your garage door opener repaired and running smoothly.
An extension spring counterbalance system consists of a pair of stretched springs running parallel to the horizontal tracks. The springs lift the door through a system of pulleys and counterbalance cables running from the bottom corner brackets through the pulleys. When the door is raised, the springs contract, thus lifting the door as the tension is released. Typically these springs are made of 11 gauge galvanized steel, and the lengths of these springs are based on the height of the garage door in question. Their lifting weight capacity can best be identified by the color that is painted on the ends of the springs.
Once the shaft, springs, and center bearing plate come down and lay on the floor, the old springs should be easy to get off and new ones slid on and assembled. Two bolts hold the center cones to the center bearing plate. The bearing on the center plate can be oiled while it is exposed from having the springs off. At this point it is a relief to be working with inert parts while standing on the floor rather than energized parts while up on the ladder. You might think it would save a little time to replace the spring with the shaft left up on the wall, but I found it was easier and safer to lower the works down to the garage floor first.
If your garage door is opening slowly or making a lot of noise, the problem may not be your opener. So before you buy a new one, check for broken or wobbly rollers and brackets. But don’t replace the bottom roller bracket yourself—the cable attached to it is under extreme tension. You’ll need to call a pro. If you’re replacing the rollers, get nylon rollers. They operate quieter than steel rollers and cost only a few bucks more. Next, check the torsion spring (mounted on the header above the door opening) to see if it’s broken. When one breaks, you’ll see a gap in the coils. You’ll need a pro to replace a broken spring.
If this manipulative, we-are-your-nanny business approach is truly in our best interests as consumers, then we shouldn't be allowed near ladders, lawn mowers, or power tools. Those products are just as hazardous and prone to misuse as torsion springs, yet no one thinks of them as forbidden. The only genuine difference is that torsion springs are a hazardous thing you need only rarely, while a lawn mower is a hazardous thing you need all the time.
Call Girard's Garage Door Service, and one of our technicians will walk you through all the options to find the perfect garage door for your taste and budget. We work with the top manufacturers across the country to ensure the utmost safety and security for your family. We’re a volume dealer, so we’re able to beat the prices that most local companies charge. We offer excellent service at an affordable price. Check out our garage door options here.
Overhead Door™ products automatically include the unequaled expertise of Overhead Door™ Distributors. Combined with our innovative product design and manufacturing superiority, our distributors are a proud part of the family, sharing our name, Red Ribbon logo, and commitment to excellence. Our network of more than 400 Overhead Door™ D​istributors ensures you have convenient access to our commercial doors and operators, residential garage doors and openers, and accessories wherever you are. This extensive distribution network is unique in our industry, providing a single source for personalized design and application consulting, quick installation, turnkey services and professional maintenance.
Winding "up" starts out easy. It finishes at the proper number of turns, by which time you are pushing against the maximum torque. Count the turns of spring winding from when the springs are slack. To be sure you're winding the right direction, all you have to remember is that proper winding makes the spring smaller in diameter and longer in length as it twists "in". On the standard door (most common), this means you push the winding bars up to wind up the spring, which is an easily remembered rule. This is very apparent and should be verified during the first few easy turns. You can also think about the correct winding direction in mechanical terms, namely which way the reaction of the spring will torque the shaft and drums, which in turn will lift the cable. This should all make perfect sense before you attempt the manipulations.
We’ve earned that reputation by always putting our customers first. When it comes to residential and commercial garage door repair services in northern Kentucky and Cincinnati, you’ll always get our best. That includes reliable installation, quick and responsible customer service, free and fair estimates on our work and 24/7 emergency service when you need it the most. We have designed our installation and repair services to make sure you get the most out of your garage door for as long as possible.

The majority of those who have purchased this product have been happy with it, saying it’s extremely quiet and comes with a great lifetime warranty. Some of the more critical reviews had to do with the remote not working well and other minor malfunctions. (A few quick tips can help you fix any common garage door opener problems.) However, most were satisfied with the product and would recommend it to others. 


Garage door springs come in two styles: torsion (see above), which mounts on the header above the door, and extension (Photo 1), which floats above the upper roller track. In the past, extension springs were safer to install but didn’t have containment cables running through the center of the spring. Without cable, these springs become dangerous, heavy whips when they break. They also tend to be noisier than torsion springs, and we recommend you use them only if you don’t have the 12 in. of headroom above the door that a torsion spring requires.

A spring design manual, also called a rate book, gives tables that relate the torque constant ("rate") and maximum turns for springs of given wire size, diameter, and length. For example, a typical page in a rate book would show a table for a given wire size and inside diameter, the maximum inch-pounds (MIP) of torque available for a standard lifetime of 10,000 cycles in that size, the weight of the spring per linear inch, and the rates of the spring (as IPPT, inch-pounds per turn) for each of various lengths. From these figures one can calculate the lifting capacity, substitutions, conversions, and cycle life upgrades for a door of given weight and drum geometry. The weight-lifting capacity of a given spring is calculated based on its torque constant (IPPT, or inch-pounds per turn), which is the rotational version of the spring constant that characterizes the spring. The IPPT constant is found from tables giving IPPT for given spring dimensions (wire-size/diameter/length). The same tables may indicate the maximum number of turns for various expected lifetimes in cycles. The torque required to balance a given door can be calculated from the weight of the door times the moment arm of the drums (as we do below under "Calculating the Forces We Will Be Handling"). The ultimate torque of the spring in the fully-wound condition is the number of turns (when fully-wound) times the IPPT constant. Choosing a spring to balance the door then simply requires matching the ultimate torque of the spring to the balancing torque.


Garage door frames and mouldings will freshen up the appearance of your garage and garage door. We offer frames in a broad assortment of finishes and widths, so you can find the perfect fit for your garage. Update or repair the hardware on your garage door with our wide selection of our garage door parts and accessories. Some of the accessories we offer include cables, hinges, reinforcement brackets, and locking door handles.
×