Michael Davis replaced the tension springs and just about everything else that moves on both of my single car garage doors. I think I paid a premium price ($900) but I also believe I got the quality of service I paid for. Both doors are balanced and glide effortlessly and quietly along the tracks. Michael took the time to inspect and adjust every aspect of the garage door system including the opener (which I installed myself).read more
Unmatched or mismatched spring pair: You may find that you have a pair of springs that are different sizes. This mismatch may be a normal application, since the total torque on the torsion shaft is simply the sum of the torque contribution of each spring (indeed, very large doors can be lifted with 4 or more springs along the torsion shaft). The sum of the torque rates determine the lift; and dividing the torque among multiple springs does not change this. Some repair shops even apply mismatched pairs deliberately, since a few stock sizes of springs can be combined to fit a wider range of door weights than only matched pairs. For example, a technician may carry springs in increments of 20 lbs of lift, and when using pairs this allows a 20 lb increment in possible choices instead of 40 lb increments. Or, one spring from a pair may have broken and been replaced with a spring of equal torque rate but different size than the original.
Note that I am measuring a spring that is fully relaxed because it is broken!. The length of the relaxed, unbroken spring is the specification of interest. It is harder to measure unbroken springs on an intact door because the springs should not fully unwind, even at the top-of-travel. If you can't be certain of the spring diameter from indications on the cones, then you have to go through an unwinding procedure to relax them fully for measurement, or perhaps reckon the size from measuring the somewhat smaller diameter at the nearly unwound condition when the door is at its top-of-travel (although one should not attempt to raise a door with a broken spring).
Resetting the drums, if needed: If the drums were incorrectly set in their old positions, one must reset both drums in new positions on the shaft. This is complicated by the presence of old dimples in the torsion shaft from previous setting(s), which must be avoided lest they improperly influence the new setting of the drums. To begin this process of resetting the drums, the door must first be lowered and resting level on the floor, the spring(s) must be in the unwound condition with their set-screws loosened, and the lift cables wrapped around the drums. If for some reason the door does not rest level on the floor, such as the floor being uneven, then insert temporary shims between the door bottom and the floor to bring the door up to level. Loosen the set-screws on the drums, and turn the torsion shaft to avoid the old dimples from the set-screws in the old drum position. Tighten the set-screw on the left drum (that is, on your left as you face the door from in the garage), creating a new dimple, and apply tension to its cable with the locking-pliers technique, enough tension to keep the cable taut but not enough to start to move the door up. Attach and wind the cable on the opposite (right) drum by hand until the cable is similarly taut, and set the screw, remembering that tightening the screw will tend to add a bit of extra tension to the cable. Both drums should now be fixed on the torsion shaft, with the cables about equally taut (listen to the sound when you pluck them like a guitar string) and the door still level on the ground. Setting the left drum first, and the right drum second, will allow you to take up any slack in the cable introduced by the left drum rotating slightly with respect to the torsion shaft as you tighten the set screws. This alignment and balance of the cables, drums, and door is critical to smooth operation and proper closing. If you have a single-spring assembly, the distance along the torsion tube from the spring cone to one drum is longer than to the other drum, which allows a bit more twist to one side than the other, and you may have to compensate with the setting of the drums.
Stress and lifetime: Calculating the maximal stress in the wire is useful for estimating the lifetime. Using the formula above, the bending stress S in the spring wire is 32*238/(π*0.2253^3) = 212 Kpsi. The spring index C is D/d = 2.23 / 0.225 = 9.88. The Wahl correction factor is Kw = (4C-1)/(4C-4) + 0.615/C = 1.15. The Wahl-corrected stress is Kw * S = 1.15 * 212 Kpsi = 244 Kpsi. This predicts about a 10,000-cycle lifetime, which is the standard "cheap spring" configuration originally installed. Note that while this stress is proportional to the torque being applied, it is also in proportion to the inverse third-power of the wire size. Thus slightly heavier wire sizes (and suitably adjusted D and/or L) radically improve the expected cycle lifetime of the spring.
Your ad had no cheap coupons or promises.. Just business. Service was more than prompt. No attempt to fix something that was not broke or did not try to sell me anything I did not need. He stated the price at the beginning and stuck to it. (I was so pleased, I did not bother to mention a senior discount.) Very, very pleased that I have found someone I can trust and rely on. GaryRichard

Garage Door Service

×